Paper Id: 120303
Roll No: \square

B. TECH

(SEM III) THEORY EXAMINATION 2019-20
BASIC SIGNALS \& SYSTEMS
Time: 3 Hours
Total Marks: 70
Note1.AttempltSectiohfsequiangmissidgtatheohooselitably.

SECTIOAN

1. Attemquthuestiontsicf.

a.	Check the signal $\mathrm{y}(\mathrm{t})=\mathrm{x}(\sin (\mathrm{t}))$ is causal or not
b.	Explain Force-Voltage Analogy with suitable example?
c.	Define following terms- state vector, state space
d.	Find initial value of following function- $F(s)=\frac{s+1}{(s+2)(s+3)}$
e.	Explain frequency scaling property in fourier transform.
f.	Determine the transfer function for the system described by the difference equation - $\quad \mathrm{y}(\mathrm{n})-\mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})$ - $\mathrm{x}(\mathrm{n}-2)$.
g.	Enlist the properties of the ROC in Z transform.

SECTION B

2. Attempt any three of the (5llowing:

a.	Write the equalent mathematical system for the system shown in fig. Als draw the fote-voltage analogous circuit of this. (frictionless)
b.	Find Inverse Laplace transform: (i) $H(s)=\frac{4}{(s+1)(s+3)}$ (ii) $D(s)=\frac{10 s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$
c.	Find Fourier Transform of following signal: (i) $f(t)=e^{-3 t} \sin (10 t) u(t)$ (ii) $g(t)=20 / 4+t^{2}$

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

Paper Id: 120303
Roll No: \square
d. Find the Z Transform of following function- $\mathrm{x}(\mathrm{n})=2^{\mathrm{n}} \mathrm{u}(\mathrm{n})+3^{\mathrm{n}} \mathrm{u}(\mathrm{n}-1)$ And depict the ROC.
e. Explain the concept of state space equations. A system is describe by following differential equation, obtain state space representation of the system,

$$
\frac{d^{2} v(t)}{d t^{2}}+6 \frac{d v(t)}{d t}+8 v(t)=2 u(t)
$$

SECTION C

3. Attempt any one part of the following:
(a) Sketch the following signals:
(i) $f(t)=r(t+2)-r(t)-r(t-2)$
(ii) $f(t)=u(t)+5 u(t-1)-2 u(t-2)$
(b) 1. Check following function is periodic or not, if periodic find period-
(i) $f(t)=\cos \pi t+2 \cos 3 \pi t+3 \cos 5 \pi t$
4. Check if the following function is linear or not
(i) $\mathrm{Y}(\mathrm{t})=\mathrm{x}(\sin (\mathrm{t}))$
5. Attempt any one part of the following:

(a)	For the circuit shown in fig, find the current $\mathrm{i}(\mathrm{t})$ when switch is at position 2. The switch S is mod from position 1 to position 2 at $\mathrm{t}=0$. Initially switch S is at position
(b)	Find Laplace trnasform of the following function using laplace properties- i. $\mathrm{r}(2 \mathrm{t})$ ii. $\mathrm{e}^{-a t} \sin (\mathrm{wt}) \mathrm{u}(\mathrm{t})$

5. Attempt any one part of the following:
$7 \times 1=7$
(a) Obtain the trigonometric Fourier series for the waveform shown in fig.

(b) Find fourier transform of following function $-\mathrm{f}(\mathrm{t})=\mathrm{A} \operatorname{sinc}(\mathrm{t} / 2 \pi)$

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Paper Id
120303
Roll No: \square
6. Attempt any one part of the following:
$7 \times 1=7$

(a)	State and prove, the following properties of Z- transform. i. \quad Time scaling \quad ii. Time shifting \quad iii. Differentiation
(b)	Find the signal $\mathrm{x}(\mathrm{n})$ from of following function- $\mathrm{X}(\mathrm{z})=\log \left(1+\mathrm{aZ}^{-1}\right) \quad\|\mathrm{z}\|>\|\mathrm{a}\|$

7. Attempt any one part of the following:

(a)	i. Write advantages of state space analysis. ii. What is state transition matrix, write down its properties.
(b)	A state- model of the system is given by
$\left[\begin{array}{ll}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{ll}0 \\ 1\end{array}\right][u]$	
$\frac{Y(S)}{X(S)}$	
Find the transfer function $\left.\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$	
equation for a unit step input under zero initial conditions.	

